CDFCentral Preshower DetectorUpgradefor IIb

Steve Kuhlmann Argonne NationalLaboratory

Motivation

BaselineDesignParameters

IntegratedCrackChamberUpgrade

CostandSchedule

Preshower Basics

Liesbehind1.1X0of deadmaterial(solenoidcoil)and infrontofEMCalorimeter

Motivation

CDF Preshower usedin>100papers, about1/2ofallRunIpublications

IncludesHiggsSearch,Sin(2 β), HighPtPhotons,TopQuarkMass

Threeprincipleusessofar:

HighPtElectronID

SoftElectronb -tagging

PhotonBackgroundSubtraction

HighPtElectronID

MIPPeaksgivearemarkably clearpictureofbackgrounds

SoftElectronb -taggingusefulforthe "loose" b-tagofadoubletag

Thisplotof2 GeV particlesisfromthe originaltopquark "evidence" paper...

JetEnergyResolutionisanimportant componentofHiggssearches

Mostanalysesassumeimproved resolutionscomparedtoRunI

Softelectronb -tagginguseful forneutrinocorrections

Studiesunderwaytoimprovethetagging efficiencybyloweringPtthresholdbelow 2 GeV,need Preshower discrimination

RecentZEUScollaborationstudy improvesjetresolutionsby17%using Preshower energycorrections forsoftphotonsand pions

CDF Preshower GEANTsimulation of 2 GeV photonsshows 20% improvement

OneoftheMainChallengesof
"EnergyFlowAlgorithms"isestimating
thefractionoftrackenergydepositedinthe
EMcalorimeter, Preshower shouldhelp...

Summary:

HighPtElectronID

Softelectronb -tagging

Softelectronb -tagsforneutrinocorrections

Photonenergyresolutionimprovement

AcomponentofEnergyFlowAlgorithms

ButforgettheHiggs,all theFunisinPhotons

eeyyE_TCandidate Event

IfanEarlySignofNewPhysics, thenlikelytohavemanychannels withHighPtPhotons

$$ilde{C}_1 ilde{N}_2 o (jj ilde{N}_1)(\gamma ilde{N}_1) o \gamma jj ilde{E}_T$$
 $ilde{C}_1 ilde{N}_2 o (ilde{t}_1b)(\gamma ilde{N}_1) o (c ilde{N}_1b)(\gamma ilde{N}_1) o \gamma bc ilde{E}_T$
 $ilde{g} ilde{C}_2 o (qar{q} ilde{N}_2)(ilde{t}_1b) o (jj\gamma ilde{N}_1)(cb ilde{N}_1) o \gamma bcjj ilde{E}_T$
 $ilde{g} ilde{N}_2 o (qar{q} ilde{C}_2)(\gamma ilde{N}_1) o (jj ilde{t}_1b)(\gamma ilde{N}_1) o \gamma bcjj ilde{E}_T$

 $\tilde{q}\tilde{q} o (q\bar{q}\tilde{C}_2)(q\bar{q}\tilde{N}_2) o \gamma bcjjjjE_T$

Preshower istheOnly Model-IndependentBackground SubtractionMethodabove35 GeV

Forexample, Isolation distributions will be quite different for the following signals due to different number of jets.

$$\tilde{C}_1\tilde{N}_2 \to (jj\tilde{N}_1)(\gamma\tilde{N}_1) \to \gamma jj E_T$$

$$ilde{C}_1 ilde{N}_2
ightarrow (ilde{t}_1b)(\gamma ilde{N}_1)
ightarrow (c ilde{N}_1b)(\gamma ilde{N}_1)
ightarrow \gamma bc
ot \hspace{-0.5em} E_T$$

$$\tilde{g}\tilde{C}_2 \to (q\bar{q}\tilde{N}_2)(\tilde{t}_1b) \to (jj\gamma\tilde{N}_1)(cb\tilde{N}_1) \to \gamma bcjjE_T$$

$$\tilde{g}\tilde{N}_2 \to (q\bar{q}\tilde{C}_2)(\gamma\tilde{N}_1) \to (jj\tilde{t}_1b)(\gamma\tilde{N}_1) \to \gamma bcjjE_T$$

$$\tilde{g}\tilde{g} \rightarrow (q\bar{q}\tilde{C}_2)(q\bar{q}\tilde{N}_2) \rightarrow \gamma bcjjjjE_T$$

AndtheRunI Preshower Detector willnotsurviveRun IIb

Aslowgaschamberthatintegratesover4 crossings, with 5 minimum biaseventsper crossing that 's 20 minimum biasevents.

RunIIBBaselineDetectorSpecs

JoeyHuston(MSU) -- co-projectleader

Reuseexistingelectronics

"Recycle" Excess Minos Scintillator

Usethesame16 -channelphototubeas theCDF Endplug Preshower

Projectisalmostcompletelydefined withthesethreerequirements...

Excess Minos Scintillator Strip

Initial Prototype Built at ANL

InitialPrototypeBuiltatANL

Readout Cell = 3 Physical Cells

LocatednexttoCPRaremoregas chambers,CrackEnergyDetectors

AlsousefulforNewPhysicssearches involvingPhotonsandMissingEt

CantagPhotonshittingthecrack whichcauseMissingEt

Canbeaddedforanadditional6% ofthetotalcost, and installed at the same time as the CPR

AnExamplefromRunIof CrackTagging,inthiscasethe 2ndlegofaZdecay

Readout Cell = 3 Physical Cells

Cost	\$603K
Contingency	\$154K
Cost+Cont.	\$757K
U.S.(withCont.)	\$344K
Japan	\$280K
Italy	\$133K

Ourpieceofthe\$9.1M...(3.8%)

Contingency	\$154K
Labor	\$86K
R+D	\$50K
Parts	\$24K

Task Name	Total Cost
Central Preshower	\$603,083.68
Research and Development	\$50,000.00
Procure parts	\$459,864.00
Phototubes and bases	\$280,000.00
Electronics Transition Card	\$15,000.00
HV Supplies and cables	\$50,000.00
Phototube fixtures and cables	\$5,000.00
CPR Detector parts	\$92,924.00
Scintillator (Minos extra)	\$0.00
Optical Fibers and Connectors	\$89,424.00
Sheet metal and misc, supplies	\$3,500.00
CCR Detector parts	\$16,940.00
Scintillator (Bicron)	\$10,000.00
Optical Fibers and Connectors	\$6,240.00
Sheet metal and misc, supplies	\$700.00
CPR Detector Assembly	\$73,219.68
Cut scintillator strips	\$4,307.04
Paint strips with Bicron paint	\$7,178.40
Assemble bottom of module	\$4,307.04
Glueing fibers into strips	\$28,713.60
Rout fibers thru connector	\$11,485.44
Flycutting and trimming fibers	\$5,742.72
Assemble module top	\$5,742.72
Quality control	\$5,742.72
CCR Detector Assembly	\$20,000.00
Cut and prepare scintillator	\$10,000.00
Assemble detector with CPR procedure	\$10,000.00

Conclusions

Preshower Detectorshaveplayed animportantroleinRunIphysics

RoleshouldexpandintheRunII HiggsDiscovery

CrucialforNewPhysicsSearches withPhotons

Baseline Designbased on established techniques